Google Play icon

Electrons are not enough: Cuprate superconductors defy convention

Share
Posted March 19, 2013
Graph showing the breakdown of Luttinger's theorem in the normal state of cuprate superconductors.  The horizontal axis is the expected number of mobile electrons while is the vertical axis is the measured number.  The two should be equal if the theorem were true. | Graphic by Philip Phillips

Graph showing the breakdown of Luttinger’s theorem in the normal state of cuprate superconductors. The horizontal axis is the expected number of mobile electrons while is the vertical axis is the measured number. The two should be equal if the theorem were true. | Graphic by Philip Phillips

To engineers, it’s a tale as old as time: Electrical current is carried through materials by flowing electrons. But physicists at the University of Illinois and the University of Pennsylvania found that for copper-containing superconductors, known as cuprates, electrons are not enough to carry the current.

“The story of electrical conduction in metals is told entirely in terms of electrons.  The cuprates show that there is something completely new to be understood beyond what electrons are doing,” said Philip Phillips, a professor of physics and of chemistry at the University of Illinois.In physics, Luttinger’s theorem states that the number of electrons in a material is the same as the number of electrons in all of its atoms added together. Electrons are the sub-atomic particles that carry the current in a conductive material. Much-studied conducting materials, such as metals and semiconductors, hold true to the theorem.

Phillips’ group works on the theory behind high-temperature superconductors. In superconductors, current flows freely without resistance. Cuprate superconductors have puzzled physicists with their superconducting ability since their discovery in 1987.

The researchers developed a model outlining the breakdown of Luttinger’s theorem that is applicable to cuprate superconductors, since the hypotheses that the theorem is built on are violated at certain energies in these materials. The group tested it and indeed found discrepancies between the measured charge and the number of mobile electrons in cuprate superconductors, defying Luttinger.

“This result is telling us that the physics cannot be described by electrons alone,” Phillips said. “This means that the cuprates are even weirder than previously thought:  Something other than electrons carries the current.”

“Theorists have suspected that something like this was true but no one has been able to prove it,” Phillips said. “Electrons are charged. Therefore, if an electron does not contribute to the charge count, then there is a lot of explaining to do.”

Now the researchers are exploring possible candidates for current-carriers, particularly a novel kind of excitation called unparticles.

Source: University of Illinois at Urbana-Champaign

Featured news from related categories:

Technology Org App
Google Play icon
85,577 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. The World's Energy Storage Powerhouse (November 1, 2019)
  3. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  4. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)
  5. Plastic waste may be headed for the microwave (October 18, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email