Google Play icon

Quantum teleportation performed with light from a quantum dot embedded in an LED

Share
Posted March 18, 2013
Experimental set-up of the quantum teleportation device including an entangled light-emitting diode (ELED) and an assortment of beam splitters polarization controllers, detectors, and photodiodes. The researchers demonstrated that the device can generate single pairs of entangled photons with advantages compared with using a laser due to the electrical control provided by the ELED. Credit: J. Nilsson, et al. ©2013 Macmillan Publishers Limited. All rights reserved.

Experimental set-up of the quantum teleportation device including an entangled light-emitting diode (ELED) and an assortment of beam splitters polarization controllers, detectors, and photodiodes. The researchers demonstrated that the device can generate single pairs of entangled photons with advantages compared with using a laser due to the electrical control provided by the ELED. Credit: J. Nilsson, et al. ©2013 Macmillan Publishers Limited. All rights reserved.

(Phys.org) —In a new study, physicists have teleported photonic qubits made of pairs of entangled photons that are generated by an LED containing an embedded quantum dot. The novel set-up has advantages compared to the conventional method of generating entangled photons using a laser, and could lead to a simplified technique for implementing quantum teleportation in quantum information applications.

The researchers, J. Nilsson, et al., at Toshiba Research Europe Limited and the University of Cambridge, both in Cambridge, UK, have published their paper on demonstrating quantum teleportation using an LED in a recent issue of Nature Photonics. As the scientists explain, quantum teleportation—a process in which quantum information is destroyed so that it may be transferred simultaneously to another location—has been proposed as a way to create quantum communication networks and quantum computing protocols despite the no-cloning theorem. According to the no-cloning theorem, quantum information cannot be copied. Although no-cloning enables quantum cryptography to have a high degree of security, it also limits the options to create quantum communication networks and increases the losses in quantum computing due to imperfect measurements.

Read more at: phys.org

Featured news from related categories:

Technology Org App
Google Play icon
85,377 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  3. New Class of Painkillers Offers all the Benefits of Opioids, Minus the Side Effects and Addictiveness (October 16, 2019)
  4. The World's Energy Storage Powerhouse (November 1, 2019)
  5. Plastic waste may be headed for the microwave (October 18, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email