Google Play icon

Bacterial resistance breaks bridges

Posted March 15, 2013

Quinolones, such as ciprofloxacin (Cipro), are the most commonly prescribed antibacterials in the world. Their use is threatened, however, by an increasing prevalence of bacterial resistance.

Quinolones kill bacteria by increasing DNA strand breaks generated by the bacterial enzymes gyrase and topoisomerase IV. Resistance to quinolones most often arises from mutations in these two target enzymes. Neil Osheroff, Ph.D., graduate student Katie Aldred and colleagues characterized the catalytic activities, metal requirements and sensitivity to quinolones of a series of mutations in the Bacillus anthracis topoisomerase IV enzyme.

They report in the journal Nucleic Acids Research that two specific amino acids in topoisomerase IV help build a water-metal ion “bridge” that enables the interaction between quinolones and the enzyme. When these two amino acids are mutated, the bridge does not form, and quinolones cannot interact with the enzyme – resulting in resistance.

The results provide a mechanistic understanding of a common cause of quinolone resistance and may suggest strategies for overcoming it.

Source: Vanderbilt University

Featured news from related categories:

Technology Org App
Google Play icon
85,377 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  3. New Class of Painkillers Offers all the Benefits of Opioids, Minus the Side Effects and Addictiveness (October 16, 2019)
  4. The World's Energy Storage Powerhouse (November 1, 2019)
  5. Plastic waste may be headed for the microwave (October 18, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email