Google Play icon

Walk like a Camel (or a Giraffe)

Share
Posted February 8, 2013

It can be overwhelming to think of  the immense array of special shoes, insoles and orthotics available to relieve any manner of symptoms related to joint impact or stress. We have an entire industry designed to help the human species run and walk without injuries. Then consider the feet and joints of a more massive animal like the elephant or the giraffe, with no such industry to relieve their aches and pains.

A team of researchers studied how the feet and limbs of these animals handle the force of their weight as it hits the ground when they walk or run by analyzing a menagerie of videos.

Their results were published in PLOS ONE last week.

When you watch the plates shudder from the impact of the giraffe walking over the force platforms in the video below,  it seems a wonder that such small hooves manage to support such a massive animal without frequent injury. In view of how important these beasts of burden are for global welfare, understanding the dynamics of their foot design, locomotor behavior and impact forces is critical to ensuring their well-being. The study included elephants, pigs and alpacas as well as several other animals and found that the impact on the animals’ feet was proportional to their body size. But other aspects of the force of impact were distributed differently across their limbs to improve biomechanics and reduce injury. In previous research published in PLOS ONE, Dr. Hutchinson has analyzed locomotion in relation to limb and body dimensions in dinosaurs and cats.

Citation: Warner SE, Pickering P, Panagiotopoulou O, Pfau T, Ren L, et al. (2013) Size-Related Changes in Foot Impact Mechanics in Hoofed Mammals. PLoS ONE 8(1): e54784. doi:10.1371/journal.pone.0054784

Citation: Hutchinson JR, Bates KT, Molnar J, Allen V, Makovicky PJ (2011) A Computational Analysis of Limb and Body Dimensions in Tyrannosaurus rex with Implications for Locomotion, Ontogeny, and Growth. PLoS ONE 6(10): e26037. doi:10.1371/journal.pone.0026037

Citation: Zhang KY, Wiktorowicz-Conroy A, Hutchinson JR, Doube M, Klosowski M, et al. (2012) 3D Morphometric and Posture Study of Felid Scapulae Using Statistical Shape Modelling. PLoS ONE 7(4): e34619. doi:10.1371/journal.pone.0034619

Source: PLOS EveryONE, story by Krista Hoff

Featured news from related categories:

Technology Org App
Google Play icon
84,863 science & technology articles