World’s tiniest drug cabinets could be attached to cancerous cells for long term treatment

Share via AddThis
Posted January 15, 2014
World's tiniest drug cabinets could be attached to cancerous cells for long term treatment
This is Marité Cardenas in her Copenhagen lab. Credit: Jes Andersen/University of Copenhagen
As if being sick weren’t bad enough, there’s also the fear of frequent injections, side effects and overdosing on you medication. Now a team of researchers from University of Copenhagen, Department of Chemistry, Nanoscience center and the Institut Laue-Langevin (ILL), have shown that reservoirs of anti-viral pharmaceuticals could be manufactured to bind specifically to infected tissue such as cancer cells for the slow concentrated delivery of drug treatments.

The new research is published in ACS Macro Letters. The findings, from Dr Marité Cárdenas (Copenhagen) and Dr Richard Campbell and Dr Erik Watkins (ILL), came as a result of neutron reflectometry studies at the world’s leading neutron source in Grenoble, France. They could provide a way to reduce dosages and the frequency of injections administered to patients undergoing a wide variety of treatments, as well as minimising side effects of over-dosing.

The attachment of reservoirs of therapeutic drugs to cell membranes for slow diffusion and continuous delivery inside the cells is a major aim in drug R&D. A promising candidate for packaging up and carrying such concoctions of drugs are a group of self-assembled liquid crystalline particles.

Read more at: Phys.org



54,168 science & technology articles

Categories

Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)


Force-feeling phone: Software lets mobile devices sense pressure
What if you could dial 911 by squeezing your smartphone in a certain pattern in your palm? A…

Featured Image (see all)

NASA’s rodent habitat, developed at Ames Research Center in Moffett Field, California, serves as a home away from home for mice on the International Space Station. Previous rodent experiments aboard space shuttles contributed to the development of new drugs now fighting osteoporosis on Earth.

Credits: NASA
Mice Studies in Space Offer Clues on Bone Loss
Astronauts know their bodies will be tested during time spent on the International Space Station, from the 15…