World’s tiniest drug cabinets could be attached to cancerous cells for long term treatment

Share via AddThis
Posted January 15, 2014
World's tiniest drug cabinets could be attached to cancerous cells for long term treatment
This is Marité Cardenas in her Copenhagen lab. Credit: Jes Andersen/University of Copenhagen
As if being sick weren’t bad enough, there’s also the fear of frequent injections, side effects and overdosing on you medication. Now a team of researchers from University of Copenhagen, Department of Chemistry, Nanoscience center and the Institut Laue-Langevin (ILL), have shown that reservoirs of anti-viral pharmaceuticals could be manufactured to bind specifically to infected tissue such as cancer cells for the slow concentrated delivery of drug treatments.

The new research is published in ACS Macro Letters. The findings, from Dr Marité Cárdenas (Copenhagen) and Dr Richard Campbell and Dr Erik Watkins (ILL), came as a result of neutron reflectometry studies at the world’s leading neutron source in Grenoble, France. They could provide a way to reduce dosages and the frequency of injections administered to patients undergoing a wide variety of treatments, as well as minimising side effects of over-dosing.

The attachment of reservoirs of therapeutic drugs to cell membranes for slow diffusion and continuous delivery inside the cells is a major aim in drug R&D. A promising candidate for packaging up and carrying such concoctions of drugs are a group of self-assembled liquid crystalline particles.

Read more at:

47,135 science & technology articles


Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

Ready-to-use robotics development kit
SentiBotics is a ready-to-use robotic kit designed to provide a starting point for researchers and developers, who would…

Featured Image (see all)

Staphylococcus aureus being phagocytized
Produced by the National Institute of Allergy and Infectious Diseases (NIAID), this digitally-colorized scanning electron micrograph (SEM) depicts…