Supercomputers join search for ‘cheapium’

Share via AddThis
Posted January 6, 2014

In the search for cheaper materials that mimic their purer, more expensive counterparts, researchers are abandoning hunches and intuition for theoretical models and pure computing power.


In a new study, researchers from Duke University’s Pratt School of Engineering used computational methods to identify dozens of platinum-group alloys that were previously unknown to science but could prove beneficial in a wide range of applications.

Platinum is used to transform toxic fumes leaving a car’s engine into more benign gasses, to produce high octane gasoline, plastics and synthetic rubbers, and to fight the spread of cancerous tumors. But as anyone who has ever shopped for an engagement ring knows, platinum ain’t cheap.

If just one of the compounds identified in the new study is comparable in performance but easier on the wallet, it would be a boon to many industries worldwide as well as the environment.

“We’re looking at the properties of ‘expensium’ and trying to develop ‘cheapium,'” said Stefano Curtarolo, director of Duke’s Center for Materials Genomics. “We’re trying to automate the discovery of new materials and use our system to go further faster.”

The research is part of the Materials Genome Initiative launched by President Barack Obama in 2011. The initiative’s goal is to support centers, groups and researchers in accelerating the pace of discovery and deployment of advanced material systems crucial to achieving global competitiveness in the 21st century. The study appears in the Dec. 30 edition of the American Physical Society journal Physics and is highlighted in a Viewpoint article in the same issue.

Read more at:

48,934 science & technology articles


Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

In control skin from the hip (A) and normal-appearing skin from the abdomen (B), elastic fibers responsible

for skin elasticity are intact, forming an intricate mesh-like network. In stretch marks that have recently

formed during pregnancy (C), elastic fibers are lost and replaced by disorganized, thin fibrils, or “strands,”

that persist without forming a normal elastic network. The middle and bottom panels magnify the identified

areas of the top panels.
Stretch mark science: What happens to your skin when pregnancy gives you a stretch mark?
Don’t believe the hype when you see those creams and ointments promising to prevent or reduce pregnancy stretch…

Featured Image (see all)

Scientists Set Quantum Record by Using Photons to Ferry Data between Electrons 1.2 Miles Apart
Quantum entanglement is the observed phenomenon of two or more particles that are connected, even over thousands of…