Ultra-large-scale quantum entanglement

Share via AddThis
Posted January 2, 2014

The development of a quantum computer employing a special correlation among quanta, called quantum entanglement, has been the focus of attention for creating the next-generation of ultrafast computers. The key for realization of such a quantum computer is the creation of ultra-large-scale entangled states. However, the largest entangled state generated to date contains only 14 entangled modes.

© Shota Yokoyama, Top: A picture of the experimental setup. Bottom: An image of generated ultra-large scale entanglement. Nodes and links between them represent optical wave packets and entanglement, respectively.

© Shota Yokoyama, Top: A picture of the experimental setup. Bottom: An image of generated ultra-large scale entanglement. Nodes and links between them represent optical wave packets and entanglement, respectively.

The research group of Prof. Akira Furusawa and graduate student Shota Yokoyama at the Graduate School of Engineering of the University of Tokyo have realized, for the first time, the generation of ultra-large-scale entangled states using a time domain multiplexing method. This scheme enables the generation of an arbitrary large-scale entangled state without expanding the size of the experimental setup by instead using an entanglement generation machine periodically.

The generated entangled states have more than 16,000 entangled modes, which is, by three orders of magnitude, the largest entangled state generated to date. This scheme overcomes the biggest problem for the realization of a quantum computer, scalability of entangled state generation. This success opens the door to a new era of quantum computer research. This achievement was published online in Nature Photonics on November 17, 2013 at 18:00 (GMT).

Source: Tokyo University



54,103 science & technology articles

Categories

Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)


Using static electricity, insect-sized flying robots can land and stick to surfaces
Small drones need to stay aloft do their jobs — whether that’s searching for dangerous gas leaks or…

Featured Image (see all)

NASA’s rodent habitat, developed at Ames Research Center in Moffett Field, California, serves as a home away from home for mice on the International Space Station. Previous rodent experiments aboard space shuttles contributed to the development of new drugs now fighting osteoporosis on Earth.

Credits: NASA
Mice Studies in Space Offer Clues on Bone Loss
Astronauts know their bodies will be tested during time spent on the International Space Station, from the 15…