Field trial with lignin modified poplars shows potential for bio-based economy

Share via AddThis
Posted December 31, 2013

The results of a field trial with genetically modified poplar trees in Zwijnaarde, Belgium, shows that the wood of lignin modified poplar trees can be converted into sugars in a more efficient way. These sugars can serve as the starting material for producing bio-based products like bio-plastics and bio-ethanol.

The results of the field trial have been published in a scientific article in which the results of a field trial of French colleagues of the INRA institute in Orleans have also been incorporated. The article has been published in the online edition of PNAS of 30 December 2013.

The field trial however also showed that the suppression of the lignin biosynthesis in the trees is variable. In some trees the suppression is stronger than in other trees which is visible through a more pronounced red coloration of the wood beneath the bark. Some branches show almost no red coloration, others a spotty pattern and again other a full red coloration. The branches with the highest red coloration produce 160% more ethanol. On the whole the ethanol yield per gram of wood is 20% higher. This in itself is positive, except for the fact that the modified trees appear to grow somewhat less rapid than non-modified poplar trees.

Read more at: Phys.org



55,485 science & technology articles

Categories

Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)


New study unlocks potential for ultra-lightweight and flexible 3D-printed metallic materials
Lawrence Livermore National Laboratory (LLNL) engineers have achieved unprecedented scalability in 3D-printed architectures of arbitrary geometry, opening the…

Featured Image (see all)


Researchers invent “smart” thread that collects diagnostic data when sutured into tissue
For the first time, researchers led by Tufts University engineers have integrated nano-scale sensors, electronics and microfluidics into…