Scientists build ion-selective membrane for ultra-stable lithium sulfur batteries

Share via AddThis
Posted December 30, 2013
Scientists build ion-selective membrane for ultra-stable lithium sulfur batteries
Credit: Tsinghua University
Advanced energy storage systems are highly desired to fill the gap between currently available battery systems and high performance electronic devices or even electric vehicles. As the commonly-used lithium ion battery systems are approaching their theoretical energy density value, lithium-sulfur batteries are considered to be one promising candidate, exhibiting much higher theoretical energy density at 2600 Wh/kg (around 3-5 times that of the lithium ion batteries). However, the practical applications of lithium-sulfur batteries are hindered by the complexity of this electrochemical system, especially the insulate nature of sulfur and the so called “shuttle effect”, which means the diffusion and reaction of the cathode intermediate polysulfide with the anode side.

Researchers from Tsinghua University in Beijing, led by professors Qiang Zhang and Fei Wei, have developed a new strategy to build ultra-stable lithium-sulfur batteries based on an ion selective membrane system. With this new membrane system, the cyclic degradation of the cell was significantly reduced to 0.08 % per cycle within the first 500 cycles. Meanwhile, the coulombic efficiency of the battery can also be improved by around 10 %, which may greatly benefit the energy efficiency of the battery system. The team has published their findings in a recent issue of Energy & Environment Science.

Read more at:

49,037 science & technology articles


Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

Create games smarter than ever: “fork” and mash-up with RedWire
Keen to create own video game, but the thought of where to start gets you scratching your head?…

Featured Image (see all)

Scientists Set Quantum Record by Using Photons to Ferry Data between Electrons 1.2 Miles Apart
Quantum entanglement is the observed phenomenon of two or more particles that are connected, even over thousands of…