29,086 science & technology articles
 

A flexible heat conductor using carbon nanotube arrays

Posted on December 30, 2013
This news or article is intended for readers with certain scientific knowledge in the field.

It is hoped that new techniques for thermoelectric power generation using relatively low-temperature waste heat such as motor vehicle exhausts will lead to improved energy efficiency. However, the deterioration of the junction between the cold and hot electrodes and the thermoelectric conversion element in such devices is a major problem.

© Shigeo Maruyama, (Left) Image of vertically aligned SWNTs. Weak Van Der Waals attraction between adjacent SWNTs is responsible for zipping together. (Right) Structure of vertically aligned single-walled carbon nanotubes

© Shigeo Maruyama, (Left) Image of vertically aligned SWNTs. Weak Van Der Waals attraction between adjacent SWNTs is responsible for zipping together. (Right) Structure of vertically aligned single-walled carbon nanotubes

One potential solution may be found through the use of single-wall carbon nanotubes (SWNTs), which are mechanically flexible and have high thermal conductivity. It is expected that SWNTs vertically aligned in a film will provide a superior thermal interface.

A collaborative research project by Professor Shigeo Maruyama at the University of Tokyo Graduate School of Engineering, Professor Ken Goodson at Stanford University and Professor Rong Xiang at Sun Yat-sen University demonstrated the direct measurement of in-plane elastic modulus (a measure of how easy it is to deform a material) of vertically aligned SWNTs.

It was found that the mechanical properties differed greatly between the randomly-ordered edge of the film and the highly-oriented body. Through the measurement of the resonance of a micro-cantilever covered with vertically aligned SWNTs and simulations by coarse-grained molecular dynamics method, it was revealed that zipping (weak Van Der Waals attraction between adjacent SWNTs in the highly-oriented body) and entanglement of carbon nanotube bundles (in the randomly-ordered edge) are the dominant determinants of the material’s elastic properties.

Such analysis of SWNT arrays is expected to be extended to future studies of the thermal and electric properties of flexible thin film transistors, solar cells, and transparent conductive films made of SWNTs.

Source: Tokyo University

This entry was posted in Developments, Featured materials chemistry news, Materials science news, Nanotechnology news, Specialist level content and tagged , , . Bookmark the permalink.

Categories

Related Topics

Our Articles (see all)

Trending

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email