30,907 science & technology articles
 

Variation in land-use intensity leads to higher biodiversity

Posted on December 27, 2013
Variation in land-use intensity leads to higher biodiversity

Variation in land-use intensity between years – as here in the Schwäbische Alb – leads to higher biodiversity. Credit: Ilka Mai, Botanischer Garten der Universität Potsdam
If grassland is managed intensively, biodiversity typically declines. A new study led by Bernese plant ecologists shows that it is rare species that suffer the most. These negative effects could be reduced, if farmers varied the intensity of their land use between years.

Globally, the intensification of agricultural land use is considered the leading threat to biodiversity. Previous studies on the impacts of land-use intensity on biodiversity have only looked at single or small groups of organisms. However, individual species can vary greatly in how they respond to different land uses, meaning that the overall impact on biodiversity is often not clear.

A research study, published in the Proceedings of the National Academy of Science(PNAS), led by the Professors Eric Allan and Markus Fischer at the University of Bern, shows that farmers can help protect grassland biodiversity by varying management intensity over time. This reduces some of the negative effects of intensive land use, particularly for rare species.

New index measures ecosystem biodiversity

A team of 58 scientists, from both Switzerland and Germany, assembled a uniquely comprehensive dataset on the biodiversity of up to 49 groups of organisms, including groups of bacteria, fungi, plants and animals. They used data from study sites that they had established in 150 grasslands in three regions of Germany, the Biodiversity Exploratories, which varied from extensively managed and lightly grazed to intensively grazed or mown grasslands with high fertilizer input.

Read more at: Phys.org

This entry was posted in Biology news and tagged , . Bookmark the permalink.

Categories

Related Topics

Our Articles (see all)

Trending

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email