Test magnet reaches 13.5 tesla – a new CERN record

Share via AddThis
Posted November 19, 2013
Test magnet reaches 13.5 tesla – a new CERN record
A niobium-tin based magnet assembly forms part of the Short Model Coil project at CERN. Credit: Juan Carlos Perez
The Short Model Coil (SMC) programme tests new magnet technologies with magnets about 30 centimetres long. The technology developed in the SMC will eventually help engineers build more powerful magnets for the Large Hadron Collider (LHC) and future accelerators.

Currently, the LHC uses niobium-titanium superconducting magnets to both bend and focus proton beams as they race around the LHC. But these magnets are not powerful enough to support stronger focusing and higher energies. So engineers are looking into a new superconducting material, niobium tin.

“With the existing niobium-titanium technology, 8 tesla is about the maximum practical operation field,” says engineer Juan Carlos Perez, who is leading the SMC project. “The magnetic field you can produce thanks to the new material is at least 50% higher.”

Niobium tin is a superconducting material that can generate a magnetic field in the range from 15-20 tesla. Although it was discovered before niobium titanium, it is not commonly used in accelerators because it is challenging to work with.

“Niobium tin must be heat treated at high temperatures – about 650 0C – to form the superconducting phase, and becomes extremely brittle after the heat treatment,” says Perez. “The SMC project is developing technologies to master this material, working closely with US colleagues who are heavily invested in this technology.”

Engineers working on the magnets for the high-luminosity upgrade of the LHC want to eventually reach magnetic fields exceeding 12 tesla, says Perez. These higher magnetic fields will allow significantly stronger bending and focusing strengths in the LHC dipoles and quadropoles.

Read more at: Phys.org

Comment this news or article

Featured news from related categories:

60,911 science & technology articles

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email