Microsatellites are repetitive, but the lab work doesn’t have to be

Share via AddThis
Posted October 8, 2013
Microsatellites are molecular markers with numerous applications in biological research. In studies of both plants and animals, they can be used to investigate speciation, gene flow among populations, mating systems, and parentage, as well as many other questions. A new protocol created by researchers at the University of Cincinnati and several other institutions improves the efficiency of current methods, allowing quicker and cheaper development of microsatellite markers for any species of interest.

Microsatellites, which consist of repeating units of two to six base pairs of DNA, are desirable molecular markers because they are highly variable and co-dominant, allowing researchers to determine both parental contributions to an individual’s genotype. However, microsatellite markers are generally species-specific and frequently must be developed for each study from scratch, which can be a challenging task. Additionally, once microsatellite markers have been developed, the associated lab work is often time-consuming and expensive.

University of Cincinnati professor Theresa Culley and colleagues have established a method that increases the ease and affordability of microsatellite marker development by reducing the number of steps involved in the overall process. The new protocol is described in the October issue of Applications in Plant Sciences.

Previously, researchers would generally design primers for specific microsatellite markers and label each primer pair with fluorescent dyes in separate PCR reactions (for each individual included in the study). In studies including approximately 10 microsatellite markers and several hundred individuals, this would necessitate up to several thousand PCR reactions. The fluorescently labeled PCR products (i.e., amplified microsatellites) for each individual would then be combined, or pool-plexed, for genotyping.

Read more at: Phys.org

55,485 science & technology articles


Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

New study unlocks potential for ultra-lightweight and flexible 3D-printed metallic materials
Lawrence Livermore National Laboratory (LLNL) engineers have achieved unprecedented scalability in 3D-printed architectures of arbitrary geometry, opening the…

Featured Image (see all)

Researchers invent “smart” thread that collects diagnostic data when sutured into tissue
For the first time, researchers led by Tufts University engineers have integrated nano-scale sensors, electronics and microfluidics into…