Scientists uncover genetic similarities between bats and dolphins

Share via AddThis
Posted September 5, 2013
Scientists uncover genetic similarities between bats and dolphins

Several greater horseshoe bats (Rhinolophus ferrumequinum) roost. Credit: Professor Gareth Jones

The evolution of similar traits in different species, a process known as convergent evolution, is widespread not only at the physical level, but also at the genetic level, according to new research led by scientists at Queen Mary University of London and published in Nature this week.

The scientists investigated the genomic basis for echolocation, one of the most well-known examples of convergent evolution to examine the frequency of the process at a genomic level.

Echolocation is a complex physical trait that involves the production, reception and auditory processing of ultrasonic pulses for detecting unseen obstacles or tracking down prey, and has evolved separately in different groups of bats and cetaceans (including dolphins).

The scientists carried out one of the largest genome-wide surveys of its type to discover the extent to which convergent evolution of a physical feature involves the same genes.

They compared genomic sequences of 22 mammals, including the genomes of bats and dolphins, which independently evolved echolocation, and found genetic signatures consistent with convergence in nearly 200 different genomic regions concentrated in several ‘hearing genes’.

To perform the analysis, the team had to sift through millions of letters of genetic code using a computer program developed to calculate the probability of convergent changes occurring by chance, so they could reliably identify ‘odd-man-out’ genes.


Read more at:

48,920 science & technology articles


Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

In control skin from the hip (A) and normal-appearing skin from the abdomen (B), elastic fibers responsible

for skin elasticity are intact, forming an intricate mesh-like network. In stretch marks that have recently

formed during pregnancy (C), elastic fibers are lost and replaced by disorganized, thin fibrils, or “strands,”

that persist without forming a normal elastic network. The middle and bottom panels magnify the identified

areas of the top panels.
Stretch mark science: What happens to your skin when pregnancy gives you a stretch mark?
Don’t believe the hype when you see those creams and ointments promising to prevent or reduce pregnancy stretch…

Featured Image (see all)

Scientists Set Quantum Record by Using Photons to Ferry Data between Electrons 1.2 Miles Apart
Quantum entanglement is the observed phenomenon of two or more particles that are connected, even over thousands of…