25,466 science & technology articles
 

Researchers use microRNA to trap mutant viruses in the lab

Posted on August 13, 2013
Species-specific miRNA expression. Credit: Nature Biotechnology (2013) doi:10.1038/nbt.2666

Species-specific miRNA expression. Credit: Nature Biotechnology (2013) doi:10.1038/nbt.2666

It’s a scenario straight out of a sci-fi horror flick. Scientists take a deadly virus that people can only catch from birds and genetically engineer it so we can give it to each other. Unfortunately, the threat of such a highly contagious virus escaping the lab, whether by accident or at the hands of terrorists, could be more than fiction. To ensure that artificial bird flu strains, engineered to be transmissible between mammals, remain confined to laboratories, Benjamin tenOever and his colleagues at Icahn School of Medicine at Mount Sinai have devised a method of molecular biocontainment that prevents the expression of an influenza virus in humans and mice by altering the virus’ genome so it binds to a specific microRNA. Their research appears in Nature Biotechnology.

Engineering viruses to make them transmissible among mammals can help scientists learn about how viruses mutate in the wild. The study of gain-of-function mutations is an essential part of disease research. Scientists can use the knowledge obtained from such research to predict how diseases will spread and to develop new vaccines.

Recently, scientists discovered that mutations could make the H5N1 and H7N9 strains of avian flu transmissible between ferrets, considered a model for humans in influenza research. Normally, birds can transmit these viruses to humans, but humans can’t transmit them to each other. The mutation that allows ferret-to-ferret transition of H5N1 involves only three changes in the virus’ hemagglutinin protein. The ease with which researchers might create such highly contagious mutations contributes to concerns about safety. Public authorities are worried that a mutation of the H5N1 virus could create a flu pandemic as deadly as that of 1918.

 

Read more at: Phys.org

 

   
This entry was posted in Biotechnology news and tagged , , . Bookmark the permalink.

Categories

Related Topics

Trending

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email