29,378 science & technology articles
 

Researchers speed up transistors by embedding tunneling field-effect transistor

Posted on August 12, 2013
Schematic view of an SFG memory cell. A pn junction diode between the FG and D makes the FG semi-floating. The device’s symbolic representation is also shown. Credit: Science 9 August 2013: Vol. 341 no. 6146 pp. 640-643 DOI: 10.1126/science.1240961

Schematic view of an SFG memory cell. A pn junction diode between the FG and D makes the FG semi-floating. The device’s symbolic representation is also shown. Credit: Science 9 August 2013: Vol. 341 no. 6146 pp. 640-643 DOI: 10.1126/science.1240961

Researchers at Fudan University in China have discovered a way to speed up traditional computer transistors by embedding tunneling field-effect transistors (TFETs) in them. In their paper published in the journal Science, the team describes how embedding TFETs in such transistors allows for them to be run with less power, which in turn causes them to run faster.

 

Most modern computers are run with either metal-oxide-semiconductor field-effect transistors (MOSFETs) or a variation of them called floating-gate (FG) MOSFETs. Such transistors are now reaching their physical limit as far as how thin they can be—just a few atoms thick. For that reason, researchers have been looking for other ways to get more bang for their buck. In this new effort, the researchers turned to TFETs, which use quantum tunneling to move electrons through very thin material.

TFETs have traditionally been used in very low power devices. In this endeavor, they researchers created a TFET that could be used to control the electrodes that monitor the flow of electricity into a MOSFET—in this case, the floating-gate variety (it has an additional electrode gate that allows a charge to be retained). The idea is that if the gate could be made to open and close faster, the transistor as a whole would operate faster. Current chips require a build-up of charge before the gate can be opened or closed—which requires time. TFETs, because they require less power, don’t take as long to do their work, thus embedding one in a floating gate-MOSFET would alleviate the necessity of power buildup prior to gate changes, allowing for quicker opening and closing. That’s exactly what the team in China has done. Testing thus far has shown MOSFETs with embedded TFETs have improved transistor speeds as well as reduced power requirements.

 

Read more at: Phys.org

 

This entry was posted in Nanotechnology news and tagged , , . Bookmark the permalink.

Categories

Related Topics

Our Articles (see all)

Trending

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email