Scientists devise innovative method to profile and predict the behavior of proteins

Share via AddThis
Posted on August 9, 2013

An enzyme is a tiny, well-oiled machine. A class of proteins that are made up of multiple, interlocking molecular components, enzymes perform a variety of tasks inside each cell. However, precisely how these components work together to complete these tasks has long eluded scientists. But now, a team of researchers has found a way to map an enzyme’s underlying molecular machinery, revealing patterns that could allow them to predict how an enzyme behaves—and what happens when this process disrupted.

 

In the latest issue of the journal Cell, a team of scientists led by Gladstone Institutes and University of California, San Francisco (UCSF) Investigator Nevan Krogan, PhD, Texas A&M University’s Craig Kaplan, PhD, and UCSF Professor Christine Guthrie, PhD, describe a new technique—called the point mutant E-MAP (pE-MAP) approach—that gives researchers the ability to pinpoint and map thousands of interactions between each of an enzyme’s many moving parts.

The researchers focused on a well-known enzyme—called RNA polymerase II (RNAPII)—and used the single-cellular yeast species S. cerevisiae as a model. Researchers had previously mapped the physical structure of RNAPII, but not how various parts of the enzyme work with other proteins within the cell to perform vital functions.

“Scientists know RNAPII’s physical structure, but this large enzyme has many distinct regions that each perform distinct functions” said Dr. Kaplan, who is also a scientist at Texas A&M AgriLife. “We wanted to connect the dots between these regions and their function.”

Read more at: Phys.org



41,324 science & technology articles

Categories

Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

sentigaze-web-heatmap
Real-time eye movement tracking with a webcam
SentiGaze is a hardware-independent technology, which performs real-time eye movement tracking without any physical contact using only a…

Featured Image (see all)


Journey to Space in a Vacuum Chamber
When you need to test hardware designed to operate in the vast reaches of space, you start in…