Scientists devise innovative method to profile and predict the behavior of proteins

Share via AddThis
Posted on August 9, 2013

An enzyme is a tiny, well-oiled machine. A class of proteins that are made up of multiple, interlocking molecular components, enzymes perform a variety of tasks inside each cell. However, precisely how these components work together to complete these tasks has long eluded scientists. But now, a team of researchers has found a way to map an enzyme’s underlying molecular machinery, revealing patterns that could allow them to predict how an enzyme behaves—and what happens when this process disrupted.

 

In the latest issue of the journal Cell, a team of scientists led by Gladstone Institutes and University of California, San Francisco (UCSF) Investigator Nevan Krogan, PhD, Texas A&M University’s Craig Kaplan, PhD, and UCSF Professor Christine Guthrie, PhD, describe a new technique—called the point mutant E-MAP (pE-MAP) approach—that gives researchers the ability to pinpoint and map thousands of interactions between each of an enzyme’s many moving parts.

The researchers focused on a well-known enzyme—called RNA polymerase II (RNAPII)—and used the single-cellular yeast species S. cerevisiae as a model. Researchers had previously mapped the physical structure of RNAPII, but not how various parts of the enzyme work with other proteins within the cell to perform vital functions.

“Scientists know RNAPII’s physical structure, but this large enzyme has many distinct regions that each perform distinct functions” said Dr. Kaplan, who is also a scientist at Texas A&M AgriLife. “We wanted to connect the dots between these regions and their function.”

Read more at: Phys.org



40,204 science & technology articles

Categories

Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

Dark matter can be observed by analyzing distribution of regular matter and its gravitational interactions in large-scale objets, such as galaxies. Image source: YouTube screenshot.
Complex dark matter
In this video, U.S. CMS Education and Outreach Coordinator Don Lincoln discusses how dark matter might have a…

Featured Image (see all)


Multi-Utility Technology Testbed Aircraft On the Runway
The X-56A Multi-Utility Technology Testbed (MUTT) is greeted on an Edwards Air Force Base runway by a U.S.…