29,406 science & technology articles
 

Could our diet while growing up affect our offspring’s vitality?

Posted on July 9, 2013
Dr. Luciano Matzkin studies generations of fruit flies to find out the effects of the larval diet that maternal flies consume on the next generation's vitality. Credit: Michael Mercier | UAH

Dr. Luciano Matzkin studies generations of fruit flies to find out the effects of the larval diet that maternal flies consume on the next generation’s vitality. Credit: Michael Mercier | UAH

You are what you eat – and so are your offspring. And in the title bout featuring protein versus sugar, protein is the winner.

That’s what a researcher at The University of Alabama in Huntsville (UAH) found while studying the fruit fly (Drosophila melanogaster) as part of a multi-institutional team.

In a finding that may have application to human beings, the scientists discovered that a larval diet that’s predominantly protein is better than a diet of sugar when it comes to the reproduction and development of the next generation of the small flies, which count humanlike metabolism among their many biological similarities.

The scientists adjusted the proportion of yeast to sugar in the flies’ diet to devise protein-rich or sugar-rich food sources. Comparing both diets, the researchers discovered that mother flies that grew as larvae on a protein diet had greater fecundity and offspring possessing greater metabolic reserves than females grown as larvae on a diet that was predominantly sugar.

“We definitely saw a significant effect,” said Dr. Luciano Matzkin, assistant professor and director of the graduate program in the UAH Department of Biological Sciences. “We saw that maternal larval diets higher in protein increased the overall fecundity of the adult mother, the number of eggs she produced, and also had a beneficial effect on the next generation, the F1 generation of offspring.”

When researchers returned F1 larvae to a typical banana puree lab diet fed to fruit flies, it did not change the beneficial effects that the maternal larval protein diet had conferred on the F1 generation.

This basic research has applications to humans and other species, Dr. Matzkin said. “This is basic research, to understand how a species adapts. Our research is very multifaceted and allows us to then have insights into many different species.”

The dramatic change in the human diet since the Industrial Revolution “to where we have almost pre-digested food” has altered human nutrition, Dr. Matzkin said. Along with other environmental factors, the changes may influence a range of childhood and adult health outcomes, he said, such as the rise of asthma, allergies, juvenile onset diabetes, obesity, cardiovascular disease and metabolic syndrome.

Read more at: Phys.org

This entry was posted in Biotechnology news and tagged , . Bookmark the permalink.

Categories

Related Topics

Our Articles (see all)

Trending

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email