HomeSpace & EarthSpace ExplorationJuly 2, 2013 Cluster spacecraft detects elusive space wind

Share via AddThis
Posted July 3, 2013

clusterspace[1]

A new study provides the first conclusive proof of the existence of a space wind first proposed theoretically over 20 years ago. By analysing data from the European Space Agency’s Cluster spacecraft, researcher Iannis Dandouras detected this plasmaspheric wind, so-called because it contributes to the loss of material from the plasmasphere, a donut-shaped region extending above the Earth’s atmosphere. The results are published today in Annales Geophysicae, a journal of the European Geosciences Union (EGU).

 

“After long scrutiny of the data, there it was, a slow but steady wind, releasing about 1 kg of plasma every second into the outer magnetosphere: this corresponds to almost 90 tonnes every day. It was definitely one of the nicest surprises I’ve ever had!” said Dandouras of the Research Institute in Astrophysics and Planetology in Toulouse, France.

The plasmasphere is a region filled with charged particles that takes up the inner part of the Earth’s magnetosphere, which is dominated by the planet’s magnetic field.

To detect the wind, Dandouras analysed the properties of these charged particles, using information collected in the plasmasphere by ESA’s Cluster spacecraft. Further, he developed a filtering technique to eliminate noise sources and to look for plasma motion along the radial direction, either directed at the Earth or outer space.

Read more at: Phys.org



55,547 science & technology articles

Categories

Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)


Building Lab Instruments One Block at a Time
A team of researchers and students at the University of California, Riverside has created a Lego-like system of…

Featured Image (see all)


Researchers invent “smart” thread that collects diagnostic data when sutured into tissue
For the first time, researchers led by Tufts University engineers have integrated nano-scale sensors, electronics and microfluidics into…