ROSPHERE: A spherical robot for exploration missions

Share via AddThis
Posted June 21, 2013
A working Rosphere at a maize crop.

A working Rosphere at a maize crop.

Researchers at the Universidad Politécnica de Madrid, Spain, have developed a robot prototype by using an unconventional motion mode to conduct missions on wild environments.

The Robotics and Cybernetics Research Group from the Universidad Politécnica de Madrid has special interest in developing robots able to live in environments where the motion can be a difficulty due to uneven ground. They studied, designed and built a land mobile vehicle that has an unconventional motion.

The result of this work is ROSPHERE, a robot without wheels or legs which has a single spherical form that, literally, scrolls by itself to conduct the missions and being inherently stable. The robot has proved its potential for diverse applications during the assessment.

How can a single ball be able to move apparently without any external force? In this case, the performance is based on a principle of relative simplicity involving the understanding of an essential physic concept: the center of mass.

The running of the “spherical robot” can be compared to the ball game thought for hamsters. In that case, as the hamster moves it changes the location of the center of mass of the system by destabilizing the spherical robot and consequently generating motion.

In general, the numerous motion systems of spherical robots can be understood as alternative ways to replace the little animal with a mechanical system which is complemented with electronics instruments and programs in a way that, as a joint, the “mechatronic” system may induce motion of a ball in a controlled manner.

Read more at: Phys.org



54,099 science & technology articles

Categories

Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)


Using static electricity, insect-sized flying robots can land and stick to surfaces
Small drones need to stay aloft do their jobs — whether that’s searching for dangerous gas leaks or…

Featured Image (see all)

NASA’s rodent habitat, developed at Ames Research Center in Moffett Field, California, serves as a home away from home for mice on the International Space Station. Previous rodent experiments aboard space shuttles contributed to the development of new drugs now fighting osteoporosis on Earth.

Credits: NASA
Mice Studies in Space Offer Clues on Bone Loss
Astronauts know their bodies will be tested during time spent on the International Space Station, from the 15…