Filmmaking magic with polymers: Researchers make breakthroughs in manufacturing copolymer block thin film

Share via AddThis
Posted June 14, 2013
Dr. Alamgir Karim holds a strip of the polymer thin film that can now be produced at an industrial level for use in a wide range of applications.

Dr. Alamgir Karim holds a strip of the polymer thin film that can now be produced at an industrial level for use in a wide range of applications.

Think about windows coated with transparent film that absorbs harmful ultraviolet sunrays and uses them to generate electricity. Consider a water filtration membrane that blocks viruses and other microorganisms from water, or an electric car battery that incorporates a coating to give it extra long life between charges.

The self-assembled copolymer block film that makes it all possible is now being fabricated with intricately organized nanostructures, giving them multiple functions and flexibility on a macroscale level never before seen. Gupreet Singh, a Ph.D. candidate in the University of Akron College of Polymer Science and Polymer Engineering, led a team of researchers to devise a method that enables the films to assemble themselves and allows them to serve as templates or directly as end products. The films can be embedded with nanoparticles that enable everything from data storage to water purification.

Superimposed with nanopatterns that allow them to be implanted with a variety of functions—electronic, thermal or chemical—the films can be produced at an industrial level, which is no small feat in the world of science, says research team member Alamgir Karim, associate dean of research for the UA College of Polymer Science and Polymer Engineering and Goodyear Chair Professor of Polymer Engineering. Other research collaborators include Kevin Yager of Brookhaven National Laboratory in Upton, N.Y., Brian Berry of the University of Arkansas and Ho-Cheol Kim of the IBM Research Division of Almaden Research Center in San Jose, Calif.

“We have moved films manufacturing from microns to meter scale, opening pathways from the lab to fabrication,” Karim says. “Fundamentally, it allows us to practice nanoscience on a large scale. We can now produce these films quickly and inexpensively, yet with precision and without compromising quality.”

Read more at:

49,038 science & technology articles


Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

Create games smarter than ever: “fork” and mash-up with RedWire
Keen to create own video game, but the thought of where to start gets you scratching your head?…

Featured Image (see all)

Scientists Set Quantum Record by Using Photons to Ferry Data between Electrons 1.2 Miles Apart
Quantum entanglement is the observed phenomenon of two or more particles that are connected, even over thousands of…