Uncovering the mechanisms of microbial electricity generation

Share via AddThis
Posted June 13, 2013
This news or article is intended for readers with certain scientific knowledge in the field.

Bacteria transport electrons to extracellular solid materials, such as Fe(III)- and Mn(IV)-oxide insoluble minerals and even artificial electrodes. This is called extracellular electron transport (EET), and provides a central driving force for microbial fuel cells capable of producing electricity by decomposing biomass and/or organic wastewater. For the EET process, it was thought that microbes transport electrons by the shuttling process of a redox mediator, i.e. first microbes synthesize an electron-carrier flavin molecule, second the flavin receives electrons from the microbe, and third the flavin molecule diffuses to the electrode surface to terminate the EET.

Generation of protein-bound flavin directly correlated with microbial current production, demonstrating the bound flavin is the most efficient electron transport pathway. © Akihiro Okamoto.

Generation of protein-bound flavin directly correlated with microbial current production, demonstrating the bound flavin is the most efficient electron transport pathway. © Akihiro Okamoto.

In this study, researchers from the University of Tokyo (Assistant Prof. Okamoto, Prof. Hashimoto, and Assistant Prof. Nakamura) and University of Southern California (Prof. Kenneth H. Nealson) discovered a novel bacterial ability to transport electrons without the shuttling process.

Assistant Prof. Okamoto discovered by using in vivo electrochemical techniques that the EET process is mediated by a flavin molecule associated with a membrane-bound protein. This protein-bound flavin could enhance the efficiency of the EET process more-than 1,000 times compared with the shuttling model. This finding will contribute to improving the power-output of microbial fuel cells, and also the development of technology for the inhibition of microbial iron corrosion.

Source: University of Tokyo



54,130 science & technology articles

Categories

Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)


Using static electricity, insect-sized flying robots can land and stick to surfaces
Small drones need to stay aloft do their jobs — whether that’s searching for dangerous gas leaks or…

Featured Image (see all)

NASA’s rodent habitat, developed at Ames Research Center in Moffett Field, California, serves as a home away from home for mice on the International Space Station. Previous rodent experiments aboard space shuttles contributed to the development of new drugs now fighting osteoporosis on Earth.

Credits: NASA
Mice Studies in Space Offer Clues on Bone Loss
Astronauts know their bodies will be tested during time spent on the International Space Station, from the 15…