25,410 science & technology articles
 

Neuronal mechanisms underlying recognition of odor information

Posted on June 13, 2013
This news or article is intended for readers with certain scientific knowledge in the field.

Understanding the functional significance of network units such as multineuronal “barrels” and “columns” in the mammalian brain is an ongoing topic of interest in neuroscience.

Olfactory sensory neurons expressing the same type of the odorant receptor converge onto one or a few specific glomeruli in the olfactory bulb (OB). Within each glomerulus, odor information is transferred to the principal neurons. These neurons typically have a primary dendrite that projects to a single glomerulus and form a translaminar glomerular module. This anatomical module is thought to be a functional module in the processing of odor information, in analogy with “barrels” and “columns” in the cerebral cortex.

As a first step toward developing a systematic understanding of the functional role of network modules, Research Associate Shu Kikuta and his colleagues at the University of Tokyo Hospital Department of Otolaryngology explored the anatomical and functional architecture of glomerular modules using in vivo two-photon calcium imaging.

The anatomical distribution ranges of the neurons comprising the module were wider than the glomerulus, suggesting that distinct modules heavily overlap with each other. Response properties of individual component neurons varied depending on the location of the cell body along the longitudinal and horizontal axes.

Although the glomerulus module was thought to be a homologous odor processing unit, neuronal circuits in the OB could produce heterogeneous responses to individual neurons originating from the same glomerulus. This implies that coordinated neuronal circuits in the glomerular module generate a large number of outputs to olfactory cortices.

By having a large number of bulbar outputs to encode odor information, a subset of neurons could send their odor information to a specific olfactory cortex, thus enabling the olfactory cortex to extract a large amount of odor information from a limited number of odorant receptors.

Source: University of Tokyo

   
This entry was posted in Neuroscience news, Specialist level content, Studies & experiments and tagged , , . Bookmark the permalink.

Categories

Related Topics

Trending

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email