X-rays reveal new picture of ‘dinobird’ plumage patterns

Share via AddThis
Posted on June 12, 2013
This is an artist's impression of how Archaeopteryx might have looked sporting the pigmentation revealed by the new study. Credit: University of Manchester

This is an artist’s impression of how Archaeopteryx might have looked sporting the pigmentation revealed by the new study. Credit: University of Manchester

The findings came from X-ray experiments by a team from The University of Manchester, working with colleagues at the US Department of Energy’s (DOE) SLAC National Accelerator Laboratory. The scientists were able to find chemical traces of the original ‘dinobird’ and dilute traces of plumage pigments in the 150 million-year-old fossil.

“This is a big leap forward in our understanding of the evolution of plumage and also the preservation of feathers,” said Dr Phil Manning, a palaeontologist at The University of Manchester and lead author of the report in the June 13 issue of the Journal of Analytical Atomic Spectrometry (Royal Society of Chemistry).

Only 11 specimens of Archaeopteryx have been found, the first one consisting of a single feather. Until a few years ago, researchers thought minerals would have replaced all the bones and tissues of the original animal during fossilisation, leaving no chemical traces behind, but two recently developed methods have turned up more information about the dinobird and its plumage.

The first is the discovery of melanosomes – microscopic ‘biological paint pot’ structures in which pigment was once made, but are still visible in some rare fossil feathers. A team led by researchers at Brown University announced last year that an analysis of melanosomes in the single Archaeopteryx feather indicated it was black. They identified the feather as a covert – a type of feather that covers the primary and secondary wing feathers – and said its heavy pigmentation may have strengthened it against the wear and tear of flight, as it does in modern birds.

However, that study examined melanosomes from just a few locations in the fossilised feather, explained SLAC’s Dr Uwe Bergmann: “It’s actually quite a beautiful paper,” he said, “but they took just tiny samples of the feather, not the whole thing.”

Read more at: Phys.org



34,215 science & technology articles

Categories

Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

A screenshot from YouTube video
The chemistry of cats: On catnip, pheromones and kitty litter
They are seemingly the most popular thing on the Internet, the subject of millions of videos and hundreds…

Featured Image (see all)


Supercomputer Simulation of Magnetic Field Loops on the Sun
Magnetic fields emerging from below the surface of the sun influence the solar wind—a stream of particles that…