29,264 science & technology articles
 

New explanation for slow earthquakes on San Andreas

Posted on June 4, 2013
In this map of the major faults in California, fault segments that experience episodic creep events are shown in red. The blue lines indicate segments that experience stable sliding or continuous creep. Fault segments that are "locked" from the surface to the bottom of the fault are shown in black. Credit: Matt Wei

In this map of the major faults in California, fault segments that experience episodic creep events are shown in red. The blue lines indicate segments that experience stable sliding or continuous creep. Fault segments that are “locked” from the surface to the bottom of the fault are shown in black. Credit: Matt Wei

New Zealand’s geologic hazards agency reported this week an ongoing, “silent” earthquake that began in January is still going strong. Though it is releasing the energy equivalent of a 7.0 earthquake, New Zealanders can’t feel it because its energy is being released over a long period of time, therefore slow, rather than a few short seconds.

These so-called “slow slip events” are common at subduction zone faults – where an oceanic plate meets a continental plate and dives beneath it. They also occur on continents along strike-slip faults like California’s San Andreas, where two plates move horizontally in opposite directions. Occurring close to the surface, in the upper 3-5 kilometers (km) of the fault, this slow, silent movement is referred to as “creep events.”

In a study published this week in Nature Geoscience, scientists from Woods Hole Oceanographic Institution (WHOI), McGill University, and GNS Science New Zealand provide a new model for understanding the geological source of silent earthquakes, or “creep events” along California’s San Andreas fault. The new study shows creep events originate closer to the surface, a much shallower source along the fault.

“The observation that faults creep in different ways at different places and times in the earthquake cycle has been around for 40 years without a mechanical model that can explain this variability,” says WHOI geologist and co-author Jeff McGuire. “Creep is a basic feature of how faults work that we now understand better.”

Fault creep occurs in shallow portions of the fault and is not considered a seismic event. There are two types of creep. In one form, creep occurs as a continuous stable sliding of unlocked portions of the fault, and can account for approximately 25 millimeters of motion along the fault per year. The other type is called a “creep event,” sudden slow movement, lasting only a few hours, and accommodating approximately 3 centimeters of slip per event. Creep events are separated by long intervals of slow continuous creep.

Read more at: Phys.org

This entry was posted in Geology news and tagged , . Bookmark the permalink.

Categories

Related Topics

Our Articles (see all)

Trending

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email