Advancing Age and Telomere Uncapping in Arteries

Share via AddThis
Posted May 26, 2013
This news or article is intended for readers with certain scientific knowledge in the field.

Arterial telomere dysfunction may contribute to chronic arterial inflammation by inducing cellular senescence and subsequent senescence-associated inflammation. Though telomere shortening has been associated with arterial aging in humans, age-related telomere uncapping has not been described in non-cultured human tissues and may have substantial prognostic value.

In skeletal muscle feed arteries from 104 younger, middle-aged, and older adults, scientists assessed the potential role of age-related telomere uncapping in arterial inflammation.

Telomere uncapping, measured by p-histone γ-H2A.X, ser139 localized to telomeres (chromatin immunoprecipitation; ChIP) and telomeric repeat binding factor 2 bound to telomeres (ChIP) was greater in arteries from older adults compared with those from younger adults. There was greater tumor suppressor protein p53 (P53)/cyclin-dependent kinase inhibitor 1A (P21)-induced senescence, measured by P53 bound to P21 gene promoter (ChIP), and greater expression of P21, interleukin 8, and monocyte chemotactic protein 1 mRNA (RT-PCR) in arteries from older adults compared with younger adults. Telomere uncapping was a highly influential covariate for the age-group difference in P53/P21-induced senescence.

Despite progressive age-related telomere shortening in human arteries, mean telomere length was not associated with telomere uncapping or P53/P21-induced senescence.

Collectively, these findings demonstrate that advancing age is associated with greater telomere uncapping in arteries, which is linked to P53/P21-induced senescence independent of telomere shortening.

Source: Innovita Research Foundation.

48,907 science & technology articles


Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

In control skin from the hip (A) and normal-appearing skin from the abdomen (B), elastic fibers responsible

for skin elasticity are intact, forming an intricate mesh-like network. In stretch marks that have recently

formed during pregnancy (C), elastic fibers are lost and replaced by disorganized, thin fibrils, or “strands,”

that persist without forming a normal elastic network. The middle and bottom panels magnify the identified

areas of the top panels.
Stretch mark science: What happens to your skin when pregnancy gives you a stretch mark?
Don’t believe the hype when you see those creams and ointments promising to prevent or reduce pregnancy stretch…

Featured Image (see all)

Dione Before the Rings
Saturn’s rings are so expansive that they often sneak into Cassini’s pictures of other bodies. Here, they appear…