Researchers use graphene quantum dots to detect humidity and pressure

Share via AddThis
Posted on May 9, 2013
Vikas Berry, William H. Honstead professor of chemical engineering, and his research team are using graphene quantum dots to improve electron tunneling-based sensing devices.

Vikas Berry, William H. Honstead professor of chemical engineering, and his research team are using graphene quantum dots to improve electron tunneling-based sensing devices.

The latest research from a Kansas State University chemical engineer may help improve humidity and pressure sensors, particularly those used in outer space.

Vikas Berry, William H. Honstead professor of chemical engineering, and his research team are using graphene quantum dots to improve sensing devices in a twofold project. The first part involves producing the graphene quantum dots, which are ultrasmall pieces of graphene. Graphene is a single-atom thick sheet of carbon atoms and has superior electrical, mechanical and optical properties. The second part of the project involves incorporating these quantum dots into electron-tunneling based sensing devices.

To create the graphene quantum dots, the researchers used nanoscale cutting of graphite to produce graphene nanoribbons. T.S. Sreeprasad, a postdoctoral researcher in Berry’s group, chemically cleaved these ribbons into 100 nanometers lateral dimensions.

The scientists assembled the quantum dots into a network on a hydroscopic microfiber that was attached to electrodes on its two sides. They placed the assembled quantum dots less than a nanometer apart so they were not completely connected. The assembling of dots is similar to a corn on the cob structure—the corn kernels are nanoscale quantum dots and the cob is the microfiber.

Several researchers—including four 2012 alumni in chemical engineering: Augustus Graham, Alfredo A. Rodriguez, Jonathan Colston and Evgeniy Shishkin—applied a potential across the fiber and controlled the distance between the quantum dots by adjusting the local humidity, which changes the current flowing through the dots.

“If you reduce the humidity around this device, the water held by this fiber is lost,” Berry said. “As a result, the fiber shrinks and the graphenic components residing atop come close to one another in nanometer scale. This increases the electron transport from one dot to the next. Just by reading the currents one can tell the humidity in the environment.”

Read more at: Phys.org



34,204 science & technology articles

Categories

Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

A screenshot from YouTube video
The chemistry of cats: On catnip, pheromones and kitty litter
They are seemingly the most popular thing on the Internet, the subject of millions of videos and hundreds…

Featured Image (see all)


Supercomputer Simulation of Magnetic Field Loops on the Sun
Magnetic fields emerging from below the surface of the sun influence the solar wind—a stream of particles that…