Exotic atoms hold clues to unsolved physics puzzle at the dawn of the universe

Share via AddThis
Posted on May 9, 2013
Graphical representation of the shapes of 220Rn and 224Ra. Credit: Nature, doi:10.1038/nature12073

Graphical representation of the shapes of 220Rn and 224Ra. Credit: Nature, doi:10.1038/nature12073

An international team of physicists has found the first direct evidence of pear shaped nuclei in exotic atoms. The findings could advance the search for a new fundamental force in nature that could explain why the Big Bang created more matter than antimatter—-a pivotal imbalance in the history of everything.

“If equal amounts of matter and antimatter were created at the Big Bang, everything would have annihilated, and there would be no galaxies, stars, planets or people,” said Tim Chupp, a University of Michigan professor of physics and biomedical engineering and co-author of a paper on the work published in the May 9 issue of Nature.

Antimatter particles have the same mass but opposite charge from their matter counterparts. Antimatter is rare in the known universe, flitting briefly in and out of existence in cosmic rays, solar flares and particle accelerators like CERN’s Large Hadron Collider, for example. When they find each other, matter and antimatter particles mutually destruct or annihilate.

What caused the matter/antimatter imbalance is one of physics’ great mysteries. It’s not predicted by the Standard Model—-the overarching theory that describes the laws of nature and the nature of matter.

The Standard Model describes four fundamental forces or interactions that govern how matter behaves: Gravity attracts massive bodies to one another. The electromagnetic interaction gives rise to forces on electrically charged bodies. And the strong and weak forces operate in the cores of atoms, binding together neutrons and protons or causing those particles to decay.

Physicists have been searching for signs of a new force or interaction that might explain the matter-antimatter discrepancy. The evidence of its existence would be revealed by measuring how the axis of nuclei of the radioactive elements radon and radium line up with the spin.

Read more at: Phys.org