New kind of cosmic flash may reveal something never seen before: Birth of a black hole

Share via AddThis
Posted May 6, 2013
A computer-generated image of the light distortions created by a black hole. Credit: Alain Riazuelo, IAP/UPMC/CNRS

A computer-generated image of the light distortions created by a black hole. Credit: Alain Riazuelo, IAP/UPMC/CNRS

When a massive star exhausts its fuel, it collapses under its own gravity and produces a black hole, an object so dense that not even light can escape its gravitational grip. According to a new analysis by an astrophysicist at the California Institute of Technology (Caltech), just before the black hole forms, the dying star may generate a distinct burst of light that will allow astronomers to witness the birth of a new black hole for the first time.

Tony Piro, a postdoctoral scholar at Caltech, describes this signature light burst in a paper published in the May 1 issue of the Astrophysical Journal Letters. While some dying stars that result in black holes explode as gamma-ray bursts, which are among the most energetic phenomena in the universe, those cases are rare, requiring exotic circumstances, Piro explains. “We don’t think most run-of-the-mill black holes are created that way.” In most cases, according to one hypothesis, a dying star produces a black hole without a bang or a flash: the star would seemingly vanish from the sky—an event dubbed an unnova. “You don’t see a burst,” he says. “You see a disappearance.”

But, Piro hypothesizes, that may not be the case. “Maybe they’re not as boring as we thought,” he says.

According to well-established theory, when a massive star dies, its core collapses under its own weight. As it collapses, the protons and electrons that make up the core merge and produce neutrons. For a few seconds—before it ultimately collapses into a black hole—the core becomes an extremely dense object called a neutron star, which is as dense as the sun would be if squeezed into a sphere with a radius of about 10 kilometers (roughly 6 miles). This collapsing process also creates neutrinos, which are particles that zip through almost all matter at nearly the speed of light. As the neutrinos stream out from the core, they carry away a lot of energy—representing about a tenth of the sun’s mass (since energy and mass are equivalent, per E = mc2).

According to a little-known paper written in 1980 by Dmitry Nadezhin of the Alikhanov Institute for Theoretical and Experimental Physics in Russia, this rapid loss of mass means that the gravitational strength of the dying star’s core would abruptly drop. When that happens, the outer gaseous layers—mainly hydrogen—still surrounding the core would rush outward, generating a shock wave that would hurtle through the outer layers at about 1,000 kilometers per second (more than 2 million miles per hour).

Read more at:

  • Linda


48,920 science & technology articles


Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

In control skin from the hip (A) and normal-appearing skin from the abdomen (B), elastic fibers responsible

for skin elasticity are intact, forming an intricate mesh-like network. In stretch marks that have recently

formed during pregnancy (C), elastic fibers are lost and replaced by disorganized, thin fibrils, or “strands,”

that persist without forming a normal elastic network. The middle and bottom panels magnify the identified

areas of the top panels.
Stretch mark science: What happens to your skin when pregnancy gives you a stretch mark?
Don’t believe the hype when you see those creams and ointments promising to prevent or reduce pregnancy stretch…

Featured Image (see all)

Scientists Set Quantum Record by Using Photons to Ferry Data between Electrons 1.2 Miles Apart
Quantum entanglement is the observed phenomenon of two or more particles that are connected, even over thousands of…