Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life

Share via AddThis
Posted May 6, 2013
This news or article is intended for readers with certain scientific knowledge in the field.

Neurological disorders such as muscular dystrophy, cerebral palsy, and injury to the brain and spine currently have no known definitive treatments or cures. A study was carried out on 71 children suffering from such incurable neurological disorders and injury.

They were intrathecally and intramuscularly administered autologous bone marrow-derived mononuclear cells. Assessment after transplantation showed neurological improvements in muscle power and a shift on assessment scales such as FIM and Brooke and Vignos scale. Further, imaging and electrophysiological studies also showed significant changes in selective cases.

On an average follow-up of 15 ± 1 months, overall 97% muscular dystrophy cases showed subjective and functional improvement, with 2 of them also showing changes on MRI and 3 on EMG. One hundred percent of the spinal cord injury cases showed improvement with respect to muscle strength, urine control, spasticity, etc.

Eighty-five percent of cases of cerebral palsy cases showed improvements, out of which 75% reported improvement in muscle tone and 50% in speech among other symptoms. Eighty-eight percent of cases of other incurable neurological disorders such as autism, Retts Syndrome, giant axonal neuropathy, etc., also showed improvement. No significant adverse events were noted. The results show that this treatment is safe, efficacious, and also improves the quality of life of children with incurable neurological disorders and injury.

Source: PubMed



55,485 science & technology articles

Categories

Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)


New study unlocks potential for ultra-lightweight and flexible 3D-printed metallic materials
Lawrence Livermore National Laboratory (LLNL) engineers have achieved unprecedented scalability in 3D-printed architectures of arbitrary geometry, opening the…

Featured Image (see all)


Researchers invent “smart” thread that collects diagnostic data when sutured into tissue
For the first time, researchers led by Tufts University engineers have integrated nano-scale sensors, electronics and microfluidics into…