New research findings on the brain’s guardian cells

Share via AddThis
Posted April 25, 2013

Researcher Johan Jakobsson and his colleagues have now published their results in Nature Communications.

“At present, researchers know very little about exactly how microglia work. At the same time, there is a lot of curiosity and high hopes among brain researchers that greater understanding of microglia could lead to entirely new drug development strategies for various brain diseases”, says Johan Jakobsson, research group leader at the Division of Molecular Neurogenetics at Lund University.

What the researchers have now succeeded in identifying is a deviation in the structure of the microglia cells, which makes it possible to visualise them and study their behaviour. By inserting a luminescent protein controlled by a microscopic molecule, microRNA-9, the researchers can now distinguish the microglia and monitor their function over time in the brains of rats and mice.

It has long been known that microglia form the first line of defence of the immune system in diseases of the brain. They move quickly to the affected area and release an arsenal of molecules that protect the nerve cells and clear away damaged tissue. New research also suggests that microglia not only guard the nerve cells but also play an important role in their basic function.

“This represents a real step forward in technological development. Now we can view microglia in a way that has not been possible before. We and our colleagues now hope to be able to use this technique to study the role of the cells in different disease models, for example Parkinson’s disease and stroke, in which microglia are believed to play an important role”, explains Johan Jakobsson.

Source: EurekAlert

46,910 science & technology articles


Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)

Ready-to-use robotics development kit
SentiBotics is a ready-to-use robotic kit designed to provide a starting point for researchers and developers, who would…

Featured Image (see all)

Functioning Electronic Circuits by Artificial Evolution
Researchers at the MESA+ Institute for Nanotechnology and the CTIT Institute for ICT Research at the University of…