24,967 science & technology articles
 

Hybrid energy harvester generates electricity from vibrations and sunlight

Posted on April 18, 2013
(a) Diagram of the silicon nanopillar solar cell. (b) Diagram of the hybrid energy harvester consisting of a piezoelectric nanogenerator integrated on to of a silicon nanopillar solar cell. Credit: Dae-Yeong Lee, et al. ©2013 IOP Publishing Ltd

(a) Diagram of the silicon nanopillar solar cell. (b) Diagram of the hybrid energy harvester consisting of a piezoelectric nanogenerator integrated on to of a silicon nanopillar solar cell. Credit: Dae-Yeong Lee, et al. ©2013 IOP Publishing Ltd

Devices that harvest energy from the environment require specific environmental conditions; for instance, solar cells and piezoelectric generators require sunlight and mechanical vibration, respectively. Since these conditions don’t exist all the time, most energy harvesters don’t generate a constant stream of electricity. In order to harvest ubiquitous energy continuously, researchers have designed and fabricated a hybrid energy harvester that integrates a solar cell and piezoelectric generator, enabling it to harvest energy from both sunlight and sound vibration simultaneously.

The researchers, Dae-Yeong Lee, et al., from Sungkyunkwan University and Samsung Advanced Institute of Technology, both in South Korea, have published their study on the hybrid energy harvester in a recent issue of Nanotechnology.

“By using the hybrid energy harvester, two different energy sources can be utilized in one platform,” coauthor Hyunjin Kim at the Samsung Advanced Institute of Technology told Phys.org. “Thus the total output power from the hybrid harvester can be increased compared to each separate harvester. Furthermore, by harvesting two energy sources in one device, continuous output can be generated even when only one energy source is available.”

To design the harvester, the researchers turned to silicon nanopillar solar cells for the sunlight harvesting half of the device. Previous research has shown that silicon nanopillar solar cells are promising candidates as photovoltaic devices due to their low reflection, high absorption, and potential for low-cost mass production.

Read more at: Phys.org

   
This entry was posted in Nanotechnology news and tagged , . Bookmark the permalink.

Categories

Related Topics

Trending

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email