Layered ‘2-D nanocrystals’ promising new semiconductor

Share via AddThis
Posted April 17, 2013
Researchers are developing a new type of semiconductor technology, pictured here, for future computers and electronics based on "two-dimensional nanocrystals." The material is layered in sheets less than a nanometer thick that could replace today's silicon transistors. Credit: Birck Nanotechnology Center, Purdue University

Researchers are developing a new type of semiconductor technology, pictured here, for future computers and electronics based on “two-dimensional nanocrystals.” The material is layered in sheets less than a nanometer thick that could replace today’s silicon transistors. Credit: Birck Nanotechnology Center, Purdue University

Researchers are developing a new type of semiconductor technology for future computers and electronics based on “two-dimensional nanocrystals” layered in sheets less than a nanometer thick that could replace today’s transistors.

The layered structure is made of a material called molybdenum disulfide, which belongs to a new class of semiconductors – metal di-chalogenides – emerging as potential candidates to replace today’s technology, complementary metal oxide semiconductors, or CMOS.

New technologies will be needed to allow the semiconductor industry to continue advances in computer performance driven by the ability to create ever-smaller transistors. It is becoming increasingly difficult, however, to continue shrinking electronic devices made of conventional silicon-based semiconductors.

“We are going to reach the fundamental limits of silicon-based CMOS technology very soon, and that means novel materials must be found in order to continue scaling,” said Saptarshi Das, who has completed a doctoral degree, working with Joerg Appenzeller, a professor of electrical and computer engineering and scientific director of nanoelectronics at Purdue’s Birck Nanotechnology Center. “I don’t think silicon can be replaced by a single material, but probably different materials will co-exist in a hybrid technology.”

The nanocrystals are called two-dimensional because the materials can exist in the form of extremely thin sheets with a thickness of 0.7 nanometers, or roughly the width of three or four atoms. Findings show that the material performs best when formed into sheets of about 15 layers with a total thickness of 8-12 nanometers. The researchers also have developed a model to explain these experimental observations.

Read more at: Phys.org



54,155 science & technology articles

Categories

Our Articles (see all)

General News

Follow us

Facebook   Twitter   Pinterest   StumbleUpon   Plurk
Google+   Tumblr   Delicious   RSS   Newsletter via Email

Featured Video (see all)


Force-feeling phone: Software lets mobile devices sense pressure
What if you could dial 911 by squeezing your smartphone in a certain pattern in your palm? A…

Featured Image (see all)

NASA’s rodent habitat, developed at Ames Research Center in Moffett Field, California, serves as a home away from home for mice on the International Space Station. Previous rodent experiments aboard space shuttles contributed to the development of new drugs now fighting osteoporosis on Earth.

Credits: NASA
Mice Studies in Space Offer Clues on Bone Loss
Astronauts know their bodies will be tested during time spent on the International Space Station, from the 15…