Telerobotic system designed to treat bladder cancer better

Posted on April 3, 2013
Vanderbilt graduate student Andrea Bajo operates the bladder cancer telerobot in a glass flask about the size of a human bladder. Credit: Joe Howell / Vanderbilt

Vanderbilt graduate student Andrea Bajo operates the bladder cancer telerobot in a glass flask about the size of a human bladder. Credit: Joe Howell / Vanderbilt

Although bladder cancer is the sixth most common form of cancer in the U.S. and the most expensive to treat, the basic method that doctors use to treat it hasn’t changed much in more than 70 years.

An interdisciplinary collaboration of engineers and doctors at Vanderbilt and Columbia Universities intends to change that situation dramatically. Headed by Nabil Simaan, associate professor of mechanical engineering at Vanderbilt, the team has developed a prototype telerobotic platform designed to be inserted through natural orifices – in this case the urethra – that can provide surgeons with a much better view of bladder tumors so they can diagnose them more accurately. It is also designed to make it easier to remove tumors from the lining of the bladder regardless of their location: an operation called transurethral recession.

“When I observed my first transurethral resection, I was amazed at how crude the instruments are and how much pushing and stretching of the patient’s body is required,” Simaan said. That experience inspired the engineer to develop a system that uses micro-robotics to perform this difficult type of surgery. Its features and capabilities are described in an article titled “Design and Performance Evaluation of a Minimally Invasive Telerobotic Platform for Transurethral Surveillance and Intervention” published in the April issue of the journal IEEE Transactions on Biomedical Engineering.

Read more at: Phys.org